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This paper proposes a new model averaging method for the accelerated failure time models 
with right censored data. A weighted least squares procedure is used to estimate the 
parameters of candidate models. In this procedure, the candidate models are not required 
to be nested, and the weights selected by Mallows criterion are not limited to be discrete, 
which make the proposed method very flexible and general. The asymptotic optimality of 
the proposed method is proved under some mild conditions. Particularly, it is shown that 
the optimality remains valid even when the variances of the error terms are estimated 
and the feasible weighted least squares estimators are averaged. Simulation studies show 
that the proposed method has better prediction performance than many popular model 
selection or model averaging methods when all candidate models are misspecified. Finally, 
an application about primary biliary cirrhosis is provided.

© 2023 Published by Elsevier B.V.

1. Introduction

In survival analysis, the accelerated failure time (AFT) model has received extensive attention and has become an im-
portant alternative to Cox models, since it is more natural and direct in describing the covariates effects on the event time 
than Cox models (Kalbfleisch and Prentice, 2011). Various strategies have been proposed to estimate the parameters in the 
AFT model, including Miller’s estimator (Miller, 1976), Buckley-James estimator (Buckley and James, 1979; Jin et al., 2006), 
KSV estimator (Koul et al., 1981), and in this paper, the weighted least squares (WLS) estimator (Stute, 1993, 1996; He 
and Huang, 2003). Compared with other estimators, the WLS estimator has three major advantages. Firstly, it is easy to 
be carried out because no iterations are required. Next, it has consistency and asymptotic normality under reasonable as-
sumptions. Lastly, comprehensive simulation studies in Bao et al. (2007) show that it performs much better than the other 
estimators, particularly when the number of covariates is large or the censoring is heavy.

In some practical problems, we need to choose useful covariates from many potential ones. Earlier model selection 
methods were based on information criteria such as AIC and BIC. Later, regularization methods become popular, including 
Tibshirani (1996); Fan and Li (2001); Zou (2006); Lv and Fan (2009); Dai et al. (2018). About model selection in the AFT 
model, there are some methods based on the penalized weighted least squares estimator, such as Huang et al. (2006); Hu 
and Chai (2013); Cheng et al. (2022). However, when a single model is not overwhelmingly supported by the data, these 
model selection methods may ignore contributions of other candidate models and suffer from the model selection uncer-
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tainty and bias problem (Hjort and Claeskens, 2003). More importantly, when the data change, different model selection 
methods or criteria may lead to different optimal models.

To address these issues and improve prediction accuracy, various model averaging approaches have been proposed by 
exploiting all information from every candidate model. Inspired by AIC and BIC, Buckland et al. (1997) proposed smoothed 
AIC (SAIC) and smoothed BIC (SBIC) methods. Hjort and Claeskens (2003) proposed a local misspecification framework to 
establish properties of model averaging estimators. Hansen (2007) proposed a model averaging estimator with weights 
selected by minimizing a Mallows criterion. This Mallows model averaging (MMA) estimator asymptotically achieves the 
smallest possible squared error in the class of model averaging estimators. Wan et al. (2010) modified the conditions of 
Hansen (2007) by allowing non-nested candidate models and continuous weights. These improvements make the conditions 
of MMA more natural at the cost of limiting the number of candidate models. Another important model averaging criterion 
is the Jackknife model averaging (JMA) proposed by Hansen and Racine (2012), which selects the weights by minimizing a 
cross-validation criterion and has significantly lower MSE than MMA when the errors are heteroskedastic.

In survival analysis, MMA and JMA, the most representative frequentist model averaging criteria, have not been used 
until recently. Under the proportional hazards model assumption, He et al. (2020) improved the prediction accuracy of the 
integral intensity function by JMA, and Li et al. (2021) proposed a semiparametric model averaging prediction method to 
approximate the nonparametric regression function by a weighted sum of low-dimensional nonparametric submodels.

As for the AFT model, Yan et al. (2021) proposed a high dimensional JMA procedure, where the penalized Buckley-
James method (Wang et al., 2008) was used to obtain the coefficient estimators. However, the convergence of Buckley-James 
estimate cannot be guaranteed, and the possible overlap of variables in different candidate models is not considered in 
Yan et al. (2021). Recently, Liang et al. (2022) proposed another model averaging method based on KSV estimate and MMA 
criterion. As specified by Bao et al. (2007), in many cases, the effect of KSV estimator is not as good as WLS estimator. 
Moreover, constructing a linear model for the synthetic response may face the problem of excessive error variance.

Therefore in this paper, we propose the weighted least squares model averaging (WLSMA) method under the AFT model, 
where the averaging weights are selected by minimizing a MMA criterion. We show that the proposed method has asymp-
totic optimality in the sense of Li (1986). In particular, as the variances of error terms are unknown in many applications, 
we also consider the estimation of variance in the Mallows criterion and prove that even when the variances of the er-
ror terms are estimated and the feasible weighted least squares estimators are averaged, our method still has asymptotic 
optimality, which is the most important theoretical property of model averaging method and one of main theoretical con-
tributions of this paper. Besides, our method allows continuous weights, and the variables in each candidate model can 
be overlapped, which greatly improves the flexibility and applicability of the method. Extensive simulation shows that our 
WLSMA method outperforms many existing model selection and model averaging methods. In the empirical study of the 
PBC dataset, WLSMA method has also obtained good prediction accuracy.

The rest of the paper is organized as follows. We begin in Section 2 with the description of some notations, the AFT 
model and the WLS estimate. In Section 3, we propose our WLSMA method and present the asymptotic optimality of this 
new method. Sections 4 and 5 report the simulation results and the application in the PBC dataset. Finally, we provide some 
concluding remarks in Section 6 and outline the proofs of the theorems in the Appendix.

2. Notations and model

Let T and V denote the survival time and censored time, respectively. Ỹ = log T and C = log V . X = (x1, x2, . . . , xN)′
denotes the covariate matrix for N independent observations, where the dimension of xi = (xi1, xi2, . . .) is countably infinite. 
The AFT model assumes

Ỹ i = μ̃i + ei =
∞∑
j=1

β jxi j + ei, i = 1, . . . , N, (1)

with E (ei |xi) = 0 and E
(
e2

i |xi
)= σ 2. We consider a sequence of linear approximating models m = 1, . . . , M , where the mth 

model, with any km(> 0) regressors belonging to xi , takes the form of

Ỹ i =
km∑
j=1

β j,mxij,m + ei, i = 1, . . . , N,

which can be rewritten as

Ỹ = Xmβm + e,

where Ỹ = (Ỹ1, . . . , Ỹ N)′ and βm = (
β1,m, β2,m, . . . , βkm,m

)′ . Here Xm is the corresponding N × km submatrix of X and as-
sumed to be column full rank.

Following Stute (1993), we assume C is independent of X and Ỹ , and P (Ỹ � C | Ỹ , X) = P (Ỹ � C | Ỹ ) for identifiability. 

When Ỹ is subject to random right censoring, we only observe (Ui, xi, δi) , i = 1, 2, . . . , N , where Ui = min(Ỹ i, Ci) and 

2



Q. Dong, B. Liu and H. Zhao Computational Statistics and Data Analysis 184 (2023) 107743
δ = I(Ỹ i � Ci). Let F (x) and G(x) be the distribution functions of Ỹ i and Ci , respectively and assume sup{x : F (x) < 1} ≤
sup{x : G(x) < 1}.

By Minimizing the weighted least squares loss function

Q (βm) =
N∑

i=1

δi

1 − G (Ui)

(
Ui − x′

i,mβm

)2
,

we have the WLS estimator

β̂m =
(

N∑
i=1

aixi,mx′
i,m

)−1( N∑
i=1

aixi,mUi

)
, (2)

where ai = δi/(1 − G (Ui)) is related to the inverse probability weighting. Obviously, ai = 0 when individual i is censored 
and ai ≥ 1 otherwise. Stute (1993) discussed this weight and its theoretical properties. Simulation results from Stute (1993)
and Bao et al. (2007) demonstrate that the WLS estimator outperforms the well-known Miller, Buckley-James, and KSV 
estimators, especially when the number of covariates increases or the censoring is heavy.

3. The proposed model averaging method

Let n denote the number of uncensored observations in all N observations, and D = diag (d1, . . . ,dn) denote the diagonal 
matrix consisting of the non-zero elements in {ai}N

i=1. Similarly, denote Zm as the n × km submatrix of Xm composed of the 
n uncensored individuals’ covariates under the mth candidate model.

Since the weight ai = 0 for the censored individuals, the WLS estimator (2) of βm in the mth (m = 1, . . . , M) model can 
be rewritten as

β̂m = (Z ′
m D Zm

)−1
Z ′

m DY , (3)

where Y = (Y1, . . . , Yn)′ is the corresponding uncensored subvector of Ỹ . It’s not difficult to find that the estimators obtained 
by using all observations are equivalent to those obtained by using the weighted version of uncensored observations. Let 
μi = E(Yi |xi), then the estimator of μ = (μ1, . . . ,μn)′ from the mth candidate model is:

μ̂m = Zmβ̂m = Zm
(

Z ′
m D Zm

)−1
Z ′

m DY = PmY , (4)

where Pm = Zm
(

Z ′
m D Zm

)−1
Z ′

m D . Usually the distribution of C is unknown, and we can replace G(x) by the Kaplan-Meier 

estimator Ĝ(x) = 1 −∏U j�x

[
N− j

N− j+1

]1−δ j
. It should be noted that the resulted WLS estimator is different from the ordinary 

least squares estimator calculated by using only uncensored observations, because the information of censored observations 
has been used in constructing Ĝ(x), rather than being directly discarded.

We expect that under the assumption of global model misspecification, averaging the estimators of μ from multiple can-
didate models would produce a better estimator than any individual model. Let w = (w1, . . . , w M)′ be an M × 1 weighting 
vector from

HM =
{

w ∈ [0,1]M :
M∑

m=1

wm = 1

}
.

The model averaging estimator of μ is defined as

μ̂(w) =
M∑

m=1

wmμ̂m

=
M∑

m=1

wm Zm
(

Z ′
m D Zm

)−1
Z ′

m DY

= P (w)Y (5)

for some w ∈ HM , where the matrix P (w) =∑M
m=1 wm Zm

(
Z ′

m D Zm
)−1

Z ′
m D =∑M

m=1 wm Pm . We would like to choose a 
weight vector that achieves a small MSE for the fitted model.

Consider the squared loss function

Ln(w) =
n∑

i=1

(
μi − μ̂i(w)

)2

2
= ‖μ − μ̂(w)‖ , (6)
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where ‖ · ‖ denote the Euclidean norm. Then the risk function is

Rn(w) = E[Ln(w)]. (7)

Since μ is unknown, we cannot minimize (6) directly, so we use the estimation of loss function as the criterion to choose 
the optimal weighting vector. This criterion is in the spirit of Mallows criterion from Hansen (2007), which is defined as

Cn(w) = ‖Y − μ̂(w)‖2 + 2σ 2 tr{P (w)}. (8)

With some calculation, we can observe that

E[Cn(w)] = E[Ln(w)] + nσ 2.

Since Cn(w) is an unbiased estimator of the risk function Rn(w) plus a term that do not depend on w , we choose the 
weighting vector by minimizing Cn(w).

Let v = (k1, . . . ,kM)′ and B = (
μ̂1 − Y , . . . , μ̂M − Y

)
, then Cn(w) = w ′B ′B w + 2σ 2 v ′ w . This is a typical constrained 

quadratic programming problem and can be solved quickly by statistical software. Denote w∗ = arg min
w∈HM

Cn(w), we then use 

μ̂ (w∗) as our WLSMA estimator of μ. It should be emphasized that although the loss function we define is the squared loss 
for those uncensored observations, the estimators β̂m obtained by WLS in each candidate model already take the censored 
observations into account and minimizing (8) is to find the optimal linear combination of these estimators. In addition, 
this definition avoids many technical difficulties in proving the optimality theorem. Simulations also show that our WLSMA 
method works well.

Now we establish the asymptotic optimality of WLSMA. First, we need the following regular conditions:

(C1) Define ξn = inf
w∈HM

Rn(w) and w0
m is an M × 1 unit vector in which the mth element is 1 and the others are 0. For 

some integer 1 ≤ J < ∞ and some positive constant κ such that E
(

e4 J
i |xi

)
≤ κ < ∞, assume

Mξ
−2 J
n

M∑
m=1

(
Rn

(
w0

m

)) J → 0.

(C2) Let λmax(·) denote the maximum eigenvalue of the matrix, assume that

lim
n→∞ sup

w∈HM

λmax (P (w)) < ∞.

(C3) P (Ỹ � C) ∈ [c0,1], where c0 is a positive constant.

Condition (C1) imposes a bound on the conditional moments of e, which is used in most of the model averaging liter-
ature (see Wan et al. (2010); Liu et al. (2016)). It also requires that there is no finite approximating model for which the 
bias is zero. This is obvious because the real model (1) is not in the candidate model set. (C2) is a mild and natural condi-
tion (see, for example, Li (1986); Liu et al. (2016)). (C3) requires enough uncensored observations to ensure the amount of 
information in the data.

Next, we present the main results of this paper, which demonstrate the asymptotic optimality of the WLSMA estimator 
under the non-nested set-up described above. The proof of these theorems will be sketched in the appendix.

Theorem 1. Assume that the regularity conditions (C1)–(C3) hold. Then as n → ∞,

Ln(w∗)
inf

w∈HM
Ln(w)

p→ 1.

Theorem 1 implies that the weight vector in WLSMA yields a squared error that is asymptotically identical to that of the 
infeasible optimal weight vector restricted to HM . When G(x) is unknown and replaced by Ĝ(x), define d̂i = δi/(1 − Ĝ (Ui))

and D̂ = diag
(

d̂1, . . . , d̂n

)
. Then (5) becomes

μ̂Ĝ(w) =
M∑

m=1

wmμ̂Ĝ,m

=
M∑

m=1

wm Zm

(
Z ′

m D̂ Zm

)−1
Z ′

m D̂Y
= P Ĝ(w)Y ,

4



Q. Dong, B. Liu and H. Zhao Computational Statistics and Data Analysis 184 (2023) 107743
and the corresponding formulas (6) and (8) become

LĜ(w) = ‖μ − μ̂Ĝ(w)‖2, (9)

CĜ(w) = ‖Y − μ̂Ĝ(w)‖2 + 2σ 2 tr{P Ĝ(w)}. (10)

We need three additional conditions and modify Theorem 1 to maintain the optimality.

(C4) lim
n→∞

∑n
i=1 z2

i j,m/n < ∞ uniformly in j and m. λmax

(∑n
i=1 zi,m z′

i,m/n
)

< ∞ and λmin

(∑n
i=1 zi,mz′

i,m/n
)

> 0 uniformly 
in n and m.

(C5) μ′μ/n = O (1).
(C6) k2

m∗/n = o(1), km∗/ξn = op(1) and k2
m∗/ξn = O p(1) as n → ∞, where km∗ = max

1≤m≤M
km .

The bounded conditions in (C4) and (C5) are required to prove Theorem 2. (C6) is a restriction on the number of 
covariates in the candidate models.

Theorem 2. Denote ŵ∗ = arg min
w∈HM

CĜ(w). Assume (C1)–(C6) hold and n → ∞, then

LĜ(ŵ∗
)

inf
w∈HM

LĜ(w)

p→ 1.

Furthermore, the variance σ 2 of error terms is usually unknown in many applications and here we replaced it by 
σ̂ 2 = ‖Y − μ̂m∗‖2/(n − km∗ ) (see Hansen (2007)), then the corresponding formula (10) becomes Ĉ Ĝ (w) = ‖Y − μ̂Ĝ(w)‖2 +
2σ̂ 2 tr{P Ĝ(w)}. The following theorem shows that when σ 2 is replaced by σ̂ 2 and the feasible weighted least squares 
estimators are averaged, the optimality of the proposed method remains valid.

Theorem 3. Define w̃∗ = arg min
w∈HM

ĈĜ(w) and suppose that (C1)-(C6) hold. When σ̂ 2 = ‖Y − μ̂m∗‖2/(n − km∗ ) and n → ∞, we have

LĜ

(
w̃∗)

inf
w∈HM

LĜ(w)

p→ 1.

4. Simulation

In the simulation study, the data are generated from the AFT model, log (Ti) = Ỹ i =∑p
j=1 β j xi j + ei , where ei follows the 

normal distribution N (0,1). The censoring time Ci is generated from N (C0,2). By adjusting the value of C0, the censoring 
rate(CR) is about 20%, 35% and 50%. We set N = 100, 200 and p = 100, and consider different cases about the selection of 
candidate models and true values of β .

Case 1 (The nested models): We assume that only the first 
3N1/3� covariates could be observed. The mth model uses 
the first m covariates so that km = m and km∗ = M = 
3N1/3�. When N = 100 and 200, M = 13 and 17. Here the 
covariates are generated from a multivariate normal distribution with zero mean and covariance matrix � = (

σi j
)

with σi j = ρ |i− j| , where ρ = 0.5. True coefficients β j = 1/ j2 or 
√

2/ j for j = 1, 2, . . . , p, so that the true model 
would not be in the candidate model set.

Case 2 (The non-nested models): We assume that only the first 5 variables could be observed and any combination of them 
are considered, so km∗ = 5 and there would be M = 25 − 1 = 31 candidate models. The set-ups of β and covariates 
are consistent with Case 1.

Case 3 (True model in candidate set): Let the true value of β j = 0.7 for j = 1, 2, 3, 4, 5 and β j = 0 for j = 6, . . . , p. Among 
p covariates, the 1st and 3rd are randomly generated by a Poisson distribution with parameter λ = 1, the 2nd and 
4th by a binomial distribution B(1, 0.1), and the 5th to 100th by i.i.d. standard normal distribution. To make the 
covariates correlated with each other, the covariate matrix is multiplied to an upper diagonal matrix R with diagonal 
elements equal to 1 and non-diagonal elements equal to σi j = ρ |i− j| , where ρ = 0.5. The way to construct the set of 
candidate models is the same as in Case 1 and Case 2. In this setting, the true model is always included in the set 
of candidate models, either in the nested or non-nested scenarios.

In this section, we compare our WLSMA with other classical model selection or model averaging methods. The following 

is a brief description of them:
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Table 1
Mean of MSEs in Case 1 with β j = 1/ j2.

Method\CR 20% 35% 50% 20% 35% 50%
N = 100 and M = 13 N = 200 and M = 17

WLS 0.1868 0.2473 0.3433 0.1323 0.1706 0.2425
KSVMA 0.1179 0.1797 0.2787 0.0650 0.1045 0.2131
WLSMA1 0.0688 0.0803 0.1015 0.0411 0.0478 0.0634
WLSMA2 0.0728 0.0926 0.1270 0.0427 0.0518 0.0745
AIC 0.1155 0.2056 0.3067 0.0824 0.1352 0.2231
BIC 0.0845 0.1123 0.1924 0.0503 0.0681 0.1189
SAIC 0.0764 0.0971 0.1302 0.0508 0.0641 0.0939
SBIC 0.0741 0.0939 0.1261 0.0494 0.0623 0.0912
LASSO 0.0975 0.1438 0.2204 0.0653 0.0890 0.1471
SCAD 0.0992 0.1410 0.2083 0.0755 0.1001 0.1459

• Model selection methods based on AIC and BIC: The mth model’s criteria are AICm = log
(
σ̂ 2

m

) + 2n−1 tr{P Ĝ,m} and 
BICm = log

(
σ̂ 2

m

)+ n−1 log(n) tr{P Ĝ,m}, m = 1, . . . , M .

• Penalty methods LASSO and SCAD: The penalty likelihood function is Q (βm∗ ) +∑km∗
j=1 p 

(
λn, β j,m∗

)
, m = 1, . . . , M . The 

penalty functions are pL A S S O
(
λn, β j,m∗

)= λn|β j,m∗ | and

pSC AD
(
λn, β j,m∗

)=

⎧⎪⎪⎨⎪⎪⎩
λn
∣∣β j,m∗

∣∣ , ∣∣β j,m∗
∣∣≤ λn,

−β2
j,m∗−2αλn

∣∣β j,m∗
∣∣+λ2

n

|2(α−1)| , λn <
∣∣β j,m∗

∣∣≤ αλn,

(α+1)λ2
n

2 , αλn <
∣∣β j,m∗

∣∣ .
Following Fan and Li (2001), we take α = 3.7. The choice of λn is crucial to the performance of the penalty method. 
We use the ‘ncvreg’ package in R to implement LASSO and SCAD, and the cross-validation method to pick λn . As for 
the range of λn , we pick a very small value (e.g. 1 × 10−4) as a starting point, up to the maximum value that makes all 
coefficients become zero. Within this range 100 values are taken.

• Model averaging methods based on SAIC and SBIC: The weights of the mth model are:

wS AIC,m = exp (−AICm/2) /

M∑
j=1

exp
(−AIC j/2

)
,

wS B IC,m = exp (−BICm/2) /

M∑
j=1

exp
(−BIC j/2

)
,m = 1, . . . , M.

• Mallows model averaging based on KSV estimation: We adopt the model averaging method proposed in this paper, but 

change the WLS estimation into KSV estimation, that is, let β̂K S V ,m =
(∑N

i=1 xi,mx′
i,m

)−1 (∑N
i=1 ai xi,mUi

)
. We named it 

KSVMA.
• WLS estimation: We also consider the WLS estimation based on all M variables.

In our WLSMA method, another choice of σ̂ 2 is (Y − μ̂m∗ )′ D̂(Y − μ̂m∗ )/N which is recommended by He and Huang 
(2003). We named it WLSMA2 and the method in Theorem 3 WLSMA1. Evaluation is based on mean squared error (MSE) 

of μ̃ defined in (1): MSE = 1
N

∥∥∥ ˆ̃μ − μ̃
∥∥∥2

, which is a common criterion to measure predictive uncertainty. It evaluates the 

predictive performance of these methods for all observations. For our WLSMA method, ˆ̃μ =∑M
m=1 w̃∗

m Xmβ̂ Ĝ,m , where β̂ Ĝ,m

is calculated by plugging Ĝ(x) into (3). We report the mean of MSEs of 100 replications. Box-plots of the MSEs are also 
displayed. These results are shown in Figs. 1–6 and Tables 1–6.

From Fig. 1 and Table 1, it can be seen that as far as MSE is concerned, the proposed WLSMA methods outperform 
the other methods, where WLSMA1 is the best under all settings, and WLSMA2 is close to WLSMA1. Model averaging 
methods SAIC and SBIC also perform well under most settings. Besides, when the censoring rate is low, the performance of 
most methods is relatively close, but when it increases, WLSMA methods are obviously better. WLSMA1 tends to have the 
smallest quartile deviation and lower box position.

Fig. 2 and Table 2 also display the advantage of WLSMA1 and WLSMA2 over the other methods, but the performance 
of using WLS estimation on all observable variables is also good. In addition, it is easy to see that the KSVMA method 
crashes under these settings. We believe that this may be due to the slower decay rate of β with j. Under this setting, the 
performance of each method decreases.

Figs. 3–6 and Tables 3–6 show the results of Case 2 and Case 3. The conclusion is almost consistent with Case 1, that is, 
Q. Dong, B. Liu and H. Zhao Computational Statistics and Data Analysis 184 (2023) 107743
WLSMA has the best performance in most settings, especially in high censoring rates cases.
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Fig. 1. Box-plots of MSEs in Case 1 with β j = 1/ j2.

Fig. 2. Box-plots of MSEs in Case 1 with β j = √
2/ j.
7
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Table 2
Mean of MSEs in Case 1 with β j = √

2/ j.

Method\CR 20% 35% 50% 20% 35% 50%
N = 100 and M = 13 N = 200 and M = 17

WLS 0.5516 0.6588 0.7755 0.4061 0.4917 0.5720
KSVMA 1.5043 2.6591 4.1299 1.2137 2.4616 3.6381
WLSMA1 0.5597 0.6494 0.7426 0.4012 0.4751 0.5414
WLSMA2 0.5475 0.6311 0.7143 0.3965 0.4655 0.5276
AIC 0.5705 0.6734 0.7909 0.4109 0.4973 0.5773
BIC 0.6756 0.7321 0.8595 0.4775 0.5561 0.6159
SAIC 0.6294 0.6983 0.7577 0.4867 0.5483 0.5925
SBIC 0.6408 0.7090 0.7674 0.4946 0.5561 0.5999
LASSO 0.5756 0.7292 0.9076 0.4081 0.5315 0.6857
SCAD 0.6135 0.7873 1.0207 0.4350 0.5621 0.7515

Fig. 3. Box-plots of MSEs in Case 2 with β j = 1/ j2.

Table 3
Mean of MSEs in Case 2 with β j = 1/ j2.

Method\CR 20% 35% 50% 20% 35% 50%
N = 100 and M = 31 N = 200 and M = 31

WLS 0.0788 0.1072 0.1261 0.0397 0.0576 0.0871
KSVMA 0.0821 0.1173 0.1216 0.0439 0.0530 0.0781
WLSMA1 0.0588 0.0686 0.0783 0.0339 0.0375 0.0481
WLSMA2 0.0609 0.0696 0.0794 0.0340 0.0372 0.0481
AIC 0.0991 0.1018 0.1106 0.0623 0.0784 0.0938
BIC 0.1238 0.1251 0.1469 0.1157 0.1091 0.1194
SAIC 0.1583 0.1793 0.1967 0.1398 0.1446 0.1559
SBIC 0.1652 0.1857 0.2028 0.1446 0.1489 0.1559
LASSO 0.0759 0.1075 0.1351 0.0401 0.0566 0.0885
SCAD 0.0889 0.1166 0.1383 0.0458 0.0680 0.1074
8
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Fig. 4. Box-plots of MSEs in Case 2 with β j = √
2/ j.

Table 4
Mean of MSEs in Case 2 with β j = √

2/ j.

Method\CR 20% 35% 50% 20% 35% 50%
N = 100 and M = 31 N = 200 and M = 31

WLS 0.9987 1.0771 1.1524 0.9289 0.9940 1.0613
KSVMA 1.3399 1.4930 1.9220 1.0358 1.4020 1.6006
WLSMA1 0.9944 1.0870 1.1611 0.9530 1.0083 1.0225
WLSMA2 0.9912 1.0817 1.1441 0.9528 0.9796 1.0167
AIC 1.4850 1.5677 1.6331 1.1036 1.2386 1.2746
BIC 1.7596 1.9085 2.0435 1.6229 1.6349 1.6589
SAIC 1.3203 1.4215 1.5667 1.2764 1.3835 1.4173
SBIC 1.3538 1.4574 1.6073 1.2975 1.4064 1.4402
LASSO 1.0544 1.1923 1.5132 0.9429 1.0472 1.2032
SCAD 1.0619 1.2222 1.5105 0.9443 1.0368 1.1689

Table 5
Mean of MSEs in Case 3 with non-nested candidates.

Method\CR 20% 35% 50% 20% 35% 50%
N = 100 N = 200

WLS 0.2046 0.3151 0.3978 0.1525 0.2237 0.1501
KSVMA 0.8900 1.4777 2.4417 0.5890 1.0616 0.6302
WLSMA1 0.1151 0.1749 0.2349 0.0742 0.1087 0.0668
WLSMA2 0.1187 0.1846 0.2541 0.0767 0.1144 0.0696
AIC 0.1595 0.2823 0.3679 0.1121 0.1991 0.1126
BIC 0.1072 0.2061 0.3026 0.0722 0.1259 0.0706
SAIC 0.1669 0.2342 0.2960 0.1179 0.1603 0.1043
SBIC 0.1730 0.2393 0.3011 0.1209 0.1626 0.1065
LASSO 0.1895 0.3488 0.5243 0.1361 0.2343 0.1282
SCAD 0.2042 0.4038 0.5749 0.0995 0.2161 0.1025
9
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Fig. 5. Box-plots of MSEs in Case 3 with nested candidates.

Table 6
Mean of MSEs in Case 3 with non-nested candidates.

Method\CR 20% 35% 50% 20% 35% 50%
N = 100 N = 200

WLS 0.1112 0.1772 0.2433 0.0526 0.0935 0.1351
KSVMA 0.7827 1.0383 1.5549 0.4780 0.8329 1.3864
WLSMA1 0.1418 0.1921 0.2696 0.0965 0.0876 0.1251
WLSMA2 0.1454 0.2002 0.2441 0.0912 0.0889 0.1432
AIC 0.3280 0.4356 0.4853 0.0572 0.1165 0.1612
BIC 0.8704 0.9454 1.0227 0.4081 0.4825 0.5695
SAIC 0.3535 0.4340 0.4949 0.2698 0.3205 0.3797
SBIC 0.3923 0.4747 0.5377 0.2924 0.3438 0.4048
LASSO 0.1542 0.2866 0.4323 0.0652 0.1311 0.2459
SCAD 0.1600 0.2920 0.4348 0.0659 0.1264 0.2717

Next, to investigate the effect of covariate correlations on the prediction accuracy, we fix β j = 1/ j2 and the censoring 
rate at 35%, N at 200 for all three cases, let the covariates correlation parameter ρ increase from 0.2 to 0.9 and record the 
prediction performance of WLSMA and the best results of the other eight methods. Results are shown in Fig. 7. For Case 1 
(nested) and 2 (non-nested), it is clear that covariate correlations have minor effect on prediction, and WLSMA dominates 
other methods. Similar conclusions can be drawn from Case 3, except for some situations where the correlations are small.

Following one reviewer’s suggestion, we study the robustness of WLSMA to the model structure misspecification. For 
this, we fit the data from a Cox’s model with our AFT model averaging method to explore the generalization ability 
of our method. Specifically, generate the survival time T randomly from a Cox’s model with hazard function λ(t|x) =
λ0 exp{− 

∑p
j=1 β j x j}, where λ0 = 0.2 and the covariates are generated from a zero-mean multivariate normal with covari-

ance σi j = 0.8|i− j| . The censoring variable Ci is still generated from N (C0,2). We control the censoring rate by adjusting C0
and fix N at 200. However, since the Cox’s model models hazard of event occurrence rather than survival time, the estimate 

of the mean of individual survival time is unavailable. In this case, we calculate the value of Cn(w) as a substitute for MSE 

10
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Fig. 6. Box-plots of MSEs in Case 3 with non-nested candidates.

Table 7
Means of Cn(w) for Cox’s model misspecified.

Method\CR 20% 35% 50%

WLS 45.7495 40.8451 34.9752
KSVMA 37.9957 55.6680 66.8343
WLSMA1 15.6698 14.2429 15.0889
WLSMA2 16.1551 14.2010 13.5421
AIC 22.6365 20.0556 17.0071
BIC 19.6554 17.0345 14.5335
SAIC 25.6805 22.9276 19.8533
SBIC 25.0765 22.3875 19.3988
LASSO 42.1024 36.9338 30.3962
SCAD 36.1555 32.2750 26.0745

to measure the predictive performance. For simplicity, only the results of Case 2 are shown here, where β j = √
2/ j. It is 

shown in Table 7 and Fig. 8 that WLSMA still dominates most other methods.

5. Applications

In this section, we will evaluate the prediction performance of the proposed WLSMA method in a real dataset. The 
Mayo Clinic has established a dataset of 424 patients with primary biliary cirrhosis (PBC), which includes complete data 
on 17 covariates from 276 patients. The survival time of interest is the days between registration and death. Patients who 
underwent liver transplantation or were still alive at the end of the study were considered right censored. Since we can 
never know the real model, the assumption of model misspecification is quite reasonable in the empirical analysis. Following 
Huang et al. (2006)’s practice for data preprocessing, we first take log transformations to the covariates alkphos, bili, chol, 
copper, platelet, protime, ast, and trig and then standardize all continuous covariates. Discrete variables such as trt, sex, 
ascites, hepato, spiders, edema, and stage remain unchanged. A more detailed account of the PBC data can be found in 

Dickson et al. (1989). This dataset can be obtained from the package “survival” in R.

11
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Fig. 7. Means of MSE with respect to ρ in three cases.

Fig. 8. Box-plots of Cn(w) for Cox’s model misspecified.

As for the construction of candidate models, we adopt two strategies. One is to use the solution path of the LARS 
algorithm proposed by Efron et al. (2004) to construct nested candidate models. The second is to refer to Huang et al. 
(2006)’s conclusion and use the six significant covariates they found to construct 26 − 1 = 63 non-nested candidate models.

We randomly divide 276 observations into 70% training set and 30% validation set. The data in the training set are used to 
estimate the parameters. Then the prediction performance of WLSMA method is compared with other methods mentioned 

in the simulation section. Since the survival time of censored individuals is unknown, we use the mean squared error of 

12
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Fig. 9. Box-plots for MSEs of PBC dataset. The stars are the mean of MSEs and the points are the outliers.

uncensored individuals in the validation set to measure the prediction performance. The same experiment is repeated 100 
times. We show the box-plots and the mean of MSEs of repeated experiments.

As can be seen from Fig. 9, when using nested candidate models, the prediction performance of WLSMA, SAIC, and SBIC 
model average methods is relatively close and better than other methods. When using non-nested candidate model, the 
prediction performance of WLSMA method is better than that of other methods.

6. Discussion

In order to overcome model selection uncertainty and improve prediction accuracy, we propose a WLS model average 
method based on the Mallows criterion for the AFT model with right censored data in this paper. Simulation results demon-
strate the good performance of the proposed WLSMA method. In addition, the asymptotic optimality is also proved under 
certain mild conditions.

Note that although the proposed method does not require nested candidate models, the construction of candidate models 
is still a challenging problem. In empirical research, it is difficult to obtain an optimal ranking of variables in advance to 
construct nested candidate models. Moreover, when there are too many covariates, especially in the high-dimensional case 
(p > n), the possible combination of covariates will be a big computational burden to the prediction. In addition to ranking 
variables using the solution path of the LARS algorithm mentioned in this paper, various correlation coefficients can also 
be used to measure the importance of covariates to independent variables. A screening step prior to the model averaging 
procedure is also desirable.

In the preceding sections, the focus has been on the prediction of survival time. The asymptotic properties of the model 
averaging estimator of some parameters need further investigation in future research. Moreover, the Mallows model aver-
aging method developed here is for right censored data under the AFT model assumption. It may be extended to other 
survival models or other types of censored data, such as the interval-censored data.

Appendix A

Proof of Theorem 1. As Rn(w) can be written as ‖(I − P (w))μ‖2 + σ 2 tr{P (w)′ P (w)}, we have

‖(I − P (w))μ‖2 ≤ Rn(w), (A.1)

σ 2 tr{P (w)′ P (w)} ≤ Rn(w).
Also we observe that

13
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Cn(w) = Ln(w) + ‖e‖2 + 2〈e, (I − P (w))μ〉 + 2
(
σ 2 tr{P (w)} − 〈e, P (w)e〉

)
.

Omit ‖e‖2 and denote the last two terms on the right as ln(w), we can also write ŵ as ŵ = arg min
w∈HM

(Ln(w) + ln(w)).

To prove Theorem 1, it is sufficient to show the following three conclusions hold:

lim
n→∞ sup

w∈HM

λmax
(

P (w)P (w)′
)
< ∞, (A.2)

sup
w∈HM

|ln(w)/Rn(w)| p→ 0, (A.3)

sup
w∈HM

|Ln(w)/Rn(w) − 1| p→ 0. (A.4)

First we prove (A.2). Define Q m = D1/2 Zm

[(
D1/2 Zm

)′
D1/2 Zm

]−1 (
D1/2 Zm

)′
which is an idempotent matrix. Then we can 

observe that

λmax
(

P (w)P (w)′
)1/2 = ∥∥P (w)′

∥∥
1 ≤

∑
m

wm

∥∥∥D Zm
(

Z ′
m D−1 Zm

)−1
Z ′

m

∥∥∥
1

=
∑

m

wm

∥∥∥D1/2 Q m D−1/2
∥∥∥

1
,

where ‖·‖1 denotes the Banach norm. Using the submultiplicity of the Banach norm and the property of idempotent matrix 
yield ∥∥∥D1/2 Q m D−1/2

∥∥∥2

1
≤
∥∥∥D1/2

∥∥∥2

1
‖Q m‖2

1

∥∥∥D−1/2
∥∥∥2

1

= λmax (D) λmax (Q m) λmax(D−1)

≤
(

max
i

di

)(
min

i
di

)−1

.

Since the diagonal elements of D are bounded, we have

λmax
(

P (w)P (w)′
)1/2 ≤

(
max

i
di

)(
min

i
di

)−1

≤ C0,

where Cl(l = 0, 1, 2, . . . ) is a constant. Hence, (A.2) is proved.
Instead of proving (A.3), it is sufficient to prove:

sup
w∈HM

|〈e, (I − P (w))μ〉|/Rn(w)
p→ 0, (A.5)

sup
w∈HM

∣∣∣σ 2 tr{P (w)} − 〈e, P (w)e〉
∣∣∣/Rn(w)

p→ 0. (A.6)

For (A.5), we observe that for any δ > 0,

P

{
sup

w∈HM

|〈e, (I − P (w))μ〉|/Rn(w) > δ

}

≤ C1δ
−2 J ξ

−2 J
n

M∑
m=1

∥∥∥(I − P
(

w0
m

)
)μ
∥∥∥2 J

≤ C1δ
−2 J ξ

−2 J
n

M∑
m=1

(
Rn

(
w0

m

)) J
,

where the first inequality comes from the proof of Theorem 1 in Wan et al. (2010) and the last inequality comes from (A.1). 

When (C1) holds, we obtain (A.5). Similarly, for (A.6),
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P

{
sup

w∈HM

∣∣∣σ 2 tr{P (w)} − 〈e, P (w)e〉
∣∣∣/Rn(w) > δ

}

≤ C2δ
−2 J ξ

−2 J
n

M∑
m=1

[
tr{P

(
w0

m

)′
P
(

w0
m

)
}
] J

≤ C2δ
−2 J ξ

−2 J
n

M∑
m=1

(
Rn

(
w0

m

)) J
.

Thus, (A.6) is obtained from (C1). To prove (A.4), since we have

Ln (w) = Rn(w) + ‖P (w)e‖2 − σ 2 tr{P (w)′ P (w)} − 2〈(I − P (w))μ, P (w)e〉,
we only need to show that

sup
w∈HM

∣∣‖P (w)e‖2 − σ 2 tr{P (w)′ P (w)}∣∣
Rn(w)

p→ 0, (A.7)

sup
w∈HM

|〈(I − P (w))μ, P (w)e〉|
Rn(w)

p→ 0. (A.8)

For (A.7), since ‖P (w)e‖2 = 〈e, P (w)′ P (w)e
〉
, then by the same argument as for proving (A.5) and (A.6), we have

P

{
sup

w∈HM

∣∣∣‖P (w)e‖2 − σ 2 tr{P (w)′ P (w)}
∣∣∣/Rn(w) > δ

}

≤ C3δ
−2 J ξ

−2 J
n

M∑
m=1

[
tr{P

(
w0

m

)′
P
(

w0
m

)
P
(

w0
m

)′
P
(

w0
m

)
}
] J

.

Note that P
(

w0
m

)′
P
(

w0
m

)
is a real symmetric matrix and (A.2), we have

tr{P
(

w0
m

)′
P
(

w0
m

)
P
(

w0
m

)′
P
(

w0
m

)
}

≤ λmax

(
P
(

w0
m

)′
P
(

w0
m

))
tr{P

(
w0

m

)′
P
(

w0
m

)
}

≤ C4 Rn(w0
m).

Hence, (A.7) is obtained from (C1). Similarly by 〈(I − P (w))μ, P (w)e〉 = 〈P (w)′(I − P (w))μ, e
〉
, we have

P

{
sup

w∈HM

|〈(I − P (w))μ, P (w)e〉|/Rn(w) > δ

}

≤ C5δ
−2 J ξ

−2 J
n

M∑
m=1

∥∥P (w)′(I − P (w))μ
∥∥2 J

.

Then by∥∥P (w)′(I − P (w))μ
∥∥2 ≤ λmax

(
P (w)′ P (w)

)‖(I − P (w))μ‖2

≤ C6 Rn(w),

(A.8) holds. Then we complete the proof of Theorem 1. �
Before giving the proof of Theorem 2, we need two lemmas:

Lemma 1. Assume (C3)-(C6) hold. Then we have

sup
i

∣∣∣d̂i − di

∣∣∣= O p

(
1√
n

)
(A.9)∥∥ ∥∥ √
sup
w∈HM

μ̂(w) − μ̂Ĝ(w) = O p( km∗) (A.10)
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sup
m

∥∥∥∥∥
(

1

n
Z ′

m D Zm

)−1

−
(

1

n
Z ′

m D̂ Zm

)−1
∥∥∥∥∥

1

= O p(
km∗√

n
) (A.11)

sup
m

∥∥∥∥∥
(

1

n
Z ′

m D̂ Zm

)−1
∥∥∥∥∥

1

= O p(1). (A.12)

These are conclusions from Zhou (1992) and Liu et al. (2016). Their assumptions are similar to ours so we can get these 
conclusions directly. The details are omitted here.

Lemma 2. Assume (C3)-(C6) hold. Then

sup
m

∥∥∥Pm − P Ĝ,m

∥∥∥2 = O p(
k2

m∗
n

). (A.13)

Proof of Lemma 2.

sup
m

∥∥∥Pm − P Ĝ,m

∥∥∥2

= sup
m

∥∥∥∥Zm
(

Z ′
m D Zm

)−1
Z ′

m D − Zm

(
Z ′

m D̂ Zm

)−1
Z ′

m D̂

∥∥∥∥2

= sup
m

∥∥∥∥Zm
(

Z ′
m D Zm

)−1
Z ′

m D − Zm
(

Z ′
m D Zm

)−1
Z ′

m D̂ + Zm
(

Z ′
m D Zm

)−1
Z ′

m D̂ − Zm

(
Z ′

m D̂ Zm

)−1
Z ′

m D̂

∥∥∥∥2

≤ sup
m

∥∥∥Zm
(

Z ′
m D Zm

)−1
Z ′

m(D − D̂)

∥∥∥2 + sup
m

∥∥∥∥Zm

[(
Z ′

m D Zm
)−1 −

(
Z ′

m D̂ Zm

)−1
]

Z ′
m D̂

∥∥∥∥2

.

According to (A.9), (A.11), (A.12), (C5), (C6) and the inequality ‖AB‖ ≤ ‖A‖1 ‖B‖, we have:

sup
m

∥∥∥Zm
(

Z ′
m D Zm

)−1
Z ′

m(D − D̂)

∥∥∥2

≤ sup
m

∥∥∥∥∥
(

1

n
Z ′

m D̂ Zm

)−1
∥∥∥∥∥

2

1

sup
m

∥∥∥∥1

n
Zm Z ′

m

∥∥∥∥2

max
i

∥∥∥di − d̂i

∥∥∥2

=O p(1)O p(1)O p(
1

n
)

=O p(
1

n
)

and

sup
m

∥∥∥∥Zm

[(
Z ′

m D Zm
)−1 −

(
Z ′

m D̂ Zm

)−1
]

Z ′
m D̂

∥∥∥∥2

≤ sup
m

∥∥∥∥∥
(

1

n
Z ′

m D Zm

)−1

−
(

1

n
Z ′

m D̂ Zm

)−1
∥∥∥∥∥

2

1

sup
m

∥∥∥∥1

n
Zm Z ′

m

∥∥∥∥2

max
i

{d̂2
i }

=O p(
k2

m∗
n

)O p(1)O p(1)

=O p(
k2

m∗
n

).

Then we complete the proof of Lemma 2. �
Proof of Theorem 2. We can write CĜ (w) as:

CĜ(w) = LĜ(w) + ‖e‖2 + 2〈e, (I − P Ĝ(w))μ〉 + 2
(
σ 2 tr{P Ĝ(w)} − 〈e, P Ĝ(w)e〉

)
.

Based on the proof of Theorem 1, we only need to show:∣∣ ∣∣ p

sup

w∈HM

LĜ(w)/Rn(w) − 1 → 0, (A.14)
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sup
w∈HM

|〈e, (I − P Ĝ(w))μ〉|/Rn(w)
p→ 0, (A.15)

sup
w∈HM

∣∣∣σ 2 tr{P Ĝ(w)} − 〈e, P Ĝ(w)e〉
∣∣∣/Rn(w)

p→ 0. (A.16)

We first consider (A.14). Note that∣∣∣∣ LĜ(w)

Rn(w)
− 1

∣∣∣∣
=
∣∣∣∣ Ln(w)

Rn(w)
− 1 + LĜ(w) − Ln(w)

Rn(w)

∣∣∣∣
≤
∣∣∣∣ Ln(w)

Rn(w)
− 1

∣∣∣∣+
∣∣∣∣∣
∥∥μ − μ̂Ĝ(w)

∥∥2 − ‖μ − μ̂(w)‖2

Rn(w)

∣∣∣∣∣ . (A.17)

By (A.4), we have already known that the first term of (A.17) converges to 0 in probability. For the second term,∣∣∣∣∣
∥∥μ − μ̂Ĝ(w)

∥∥2 − ∥∥μ − μ̂(w)
∥∥2

Rn(w)

∣∣∣∣∣
=
∣∣∣∣∣2(μ − μ̂(w))′(μ̂(w) − μ̂Ĝ(w)) + ∥∥μ̂(w) − μ̂Ĝ(w)

∥∥2

Rn(w)

∣∣∣∣∣
Since (A.4) and (A.10),∣∣∣∣ (μ − μ̂(w))′(μ̂(w) − μ̂Ĝ(w))

Rn(w)

∣∣∣∣
≤
(‖μ − μ̂(w)‖2

Rn(w)

)1/2(∥∥μ̂(w) − μ̂Ĝ(w)
∥∥2

Rn(w)

)1/2

=op(1),

(A.14) holds. Next we prove (A.15). Note that we have (A.1) and (A.5), we only need to follow the proof of (A.5) and show∥∥(I − P Ĝ (w))μ
∥∥2

Rn(w)
= O p(1). (A.18)

Since ∥∥(I − P Ĝ (w))μ
∥∥2

Rn(w)

≤‖(I − P (w))μ‖2 + ∥∥(P (w) − P Ĝ (w))μ
∥∥2

Rn(w)

≤1 +
∥∥(P (w) − P Ĝ (w))μ

∥∥2

ξn

=1 +
∥∥(P (w) − P Ĝ (w))(Y − e)

∥∥2

ξn

≤1 +
∥∥μ̂(w) − μ̂Ĝ(w)

∥∥2 + ∥∥(P (w) − P Ĝ (w))e
∥∥2

ξn

According to (A.10), (A.13), (C1) and (C6), it follows that∥∥μ̂(w) − μ̂Ĝ(w)
∥∥2

ξn
= op(1)

and ∥∥(P (w) − P Ĝ (w))e
∥∥2

O p(
k2

m∗
n )O p(n)
ξn
=

ξn
= O p(1).
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Then we get (A.18) and therefore (A.15) holds. For (A.16), we also follow the proof of (A.6). All we need to prove is that for 
any m,

tr{P Ĝ

(
w0

m

)′
P Ĝ

(
w0

m

)}
Rn
(

w0
m
) = O p(1). (A.19)

Let Q̂ m = D̂1/2 Zm

[(
D̂1/2 Zm

)′
D̂1/2 Zm

]−1 (
D̂1/2 Zm

)′
. It is easy to observe that

tr{P Ĝ

(
w0

m

)′
P Ĝ

(
w0

m

)
}

= tr{D̂1/2 Q̂ m D̂−1 Q̂ m D̂1/2}

≤
(

max
i

d̂i

)(
min

i
d̂i

)−1

tr{Q̂ m}
=O p(km).

By (C6), we further obtain

sup
m

tr{P Ĝ

(
w0

m

)′
P Ĝ

(
w0

m

)}
Rn
(

w0
m
) = O p(

km∗

ξn
).

Then, (A.19) holds and therefore (A.16) holds. Then we complete the proof of Theorem 2. �
Proof of Theorem 3. Notice that Ĉ Ĝ (w) = CĜ(w) + 2(σ 2 − σ̂ 2) tr{P Ĝ(w)}. Hence, from the result of Theorem 2, it suffices 
to prove that

sup
w∈Hn

∣∣∣σ̂ 2 − σ 2
∣∣∣ tr{P Ĝ(w)}/Rn(w)

p→ 0.

Note that

sup
w∈Hn

tr{P Ĝ(w)}
Rn(w)

∣∣∣σ̂ 2 − σ 2
∣∣∣

≤ km∗

ξn

∣∣∣σ̂ 2 − σ 2
∣∣∣

= km∗

ξn

∣∣∣∣∣∣∣
Y ′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)

Y

n − km∗
− σ 2

∣∣∣∣∣∣∣
≤ km∗

n − km∗

μ′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)
μ

ξn
+

2km∗
∣∣∣∣μ′

(
I − P Ĝ,m∗

)′ (
I − P Ĝ,m∗

)
e

∣∣∣∣
ξn (n − km∗)

+
km∗

∣∣∣∣e′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)

e − σ 2 (n − km∗)

∣∣∣∣
ξn (n − km∗)

.

(A.20)

The proof to show (A.20) converges to 0 in probability follows the proof of Theorem 2 in Wan et al. (2010). To be specific, 
from (C1) and (A.1) we have

μ′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)
μ

ξn
→0. (A.21)

Also we notice that

‖
(

I − P Ĝ,m∗
)
μ‖2 ≤ λ2

max

(
I − P Ĝ,m∗

)
‖μ‖2

≤
(
λmax (I) + λmax

(
P Ĝ,m∗

))2 ‖μ‖2
= C7‖μ‖2.
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Then by using (A.21) and conditions (C5) and (C6), we obtain that as n→∞,

km∗

n − km∗

μ′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)
μ

ξn

≤
⎡⎢⎣ k2

m∗
n − km∗

μ′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)
μ

ξ2
n

C7‖μ‖2

n − km∗

⎤⎥⎦
1/2

→0. (A.22)

Moreover, using the same techniques as Wan et al. (2010), we observe that, for any δ > 0, as n→∞,

P

⎧⎪⎪⎨⎪⎪⎩
2km∗

∣∣∣∣μ′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)

e

∣∣∣∣
ξn (n − km∗)

> δ

⎫⎪⎪⎬⎪⎪⎭
≤

C84k2
m∗μ′

(
I − P Ĝ,m∗

)′ (
I − P Ĝ,m∗

)
μ

δ2ξ2
n (n − km∗)2

→0, (A.23)

and

P

⎧⎪⎪⎨⎪⎪⎩
km∗

∣∣∣∣e′
(

I − P Ĝ,m∗
)′ (

I − P Ĝ,m∗
)

e − σ 2 (n − km∗)

∣∣∣∣
ξn (n − km∗)

> δ

⎫⎪⎪⎬⎪⎪⎭
≤ C9k2

m∗ (n − km∗)

δ2ξ2
n (n − km∗)2

→0. (A.24)

Consequently, by combining (A.22)-(A.24), we obtain that (A.20) converges to 0 in probability. Then we complete the proof 
of Theorem 3. �
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